Über Ascodipteron phyllorhinae (n. gen., n. sp.), eine eigenthümliche Pupiparenform

von

Dr. Theodor Adensamer in Wien.

(Mit 2 Tafeln.)

Beim Bestimmen der Fledermäuse, die ich aus Holländisch-Indien mitgebracht habe, machte mich Herr Dr. L. v. Lorenz, Custos am naturhistorischen Hofmuseum in Wien, auf einen Parasiten einer *Phyllorhina* aus Java aufmerksam, deren Species mit den hiesigen Hilfsmitteln nicht genauer bestimmt werden konnte. Dieser Parasit war fast vollständig in die dorsale Flughaut seines Wirthes eingebohrt, nur ein knopfartiger Theil des Körpers ragte frei hervor. Bei näherer Untersuchung erwies sich derselbe als eigenthümliche neue Pupiparenform, welche ich *Ascodipteron phyllorhinae* (nov. gen., nov. spec.) benennen will, da es vorläufig nicht gelang, diese Form in eine bestehende Gattung einzureihen. Leider war es mir bis jetzt nicht möglich, ein zweites Exemplar zu erlangen, so dass ich bei meinen Beobachtungen auf ein einziges Individuum beschränkt war.

Bevor ich zum eigentlichen Thema übergehe, drängt es mich, denjenigen Herren einige Dankesworte zu widmen, welche mich bei meinen Untersuchungen unterstützten: Vor Allem den Herren Professoren Dr. C. Grobben, in dessen Institute die Arbeit ausgeführt wurde, und Dr. Fr. Brauer, die mir durch ihre Rathschläge und Mittheilungen in so vielfacher Weise geholfen haben; ferner dem Herrn Custos Dr. L. v. Lorenz, der mir gestattete, alle in Alkohol conservirten Fledermäuse des naturhistorischen Hofmuseums auf Parasiten zu untersuchen, ebenso

wie Herrn Prof. L. v. Graff, welcher mir dieselbe Erlaubniss für das zoologische Institut an der Grazer Universität gab. All' den Herren meinen wärmsten Dank!

Die äussere Gestalt.

Der Körper von Ascodipteron phyllorhinae ist bilateralsymmetrisch, flaschenförmig und zeigt keine Segmentirung (Fig. 1 und 2). Der aufgetriebene Abschnitt desselben erscheint ventral stärker gewölbt, der halsartig verengte geht in eine knopfartige Erweiterung über, welche allein aus der Phyllorhina-Haut hervorragte, während der Körper sonst in der Haut eingebohrt lag. Am Halstheile verläuft knapp unter der knopfartigen Erweiterung eine ringförmige Einschnürung, hervorgerufen durch den vorspringenden Rand der den Parasiten aufnehmenden Hautgrube des Wirthes. Der Körper des Thieres ist farblos, nur der frei hervorragende knopfartige Körpertheil zeigt zufolge der dort sich befindenden Chitingebilde, welche später genauer beschrieben werden, eine braune Färbung. Die weitere Untersuchung lehrt, dass dieser knopfartige Theil das hintere Körperende bildet. Auf derselben ist ein transversaler Spalt zu erkennen (Fig. 6, Tsp.), in welchem Darm und Geschlechtsgang münden, dorsal von demselben liegt eine parallel verlaufende Querfurche (Fig. 6, Tf.). In der Umgebung beider finden sich acht Chitinringe in bilateral-symmetrischer Anordnung: zwei zwischen Querspalte und Querfurche bilden Wälle um Chitinborsten (Fig. 6, Chr.), die anderen sechs, welche an Grösse die vorigen übertreffen, sind Stigmen (Fig. 6, Chr.,): vier liegen dorsal von der Querfurche, und zwar zwei näher aneinander knapp über derselben, zwei mehr entfernt, zwei liegen ventral. Ausserdem treten in der Nachbarschaft der Chitinringe einzelne Chitinborsten auf; zahlreiche gleiche Borsten finden sich in fünf parallel laufenden Reihen im Umkreis des knopfartigen Körperendes. Am entgegengesetzten Ende verjüngt sich der Körper zu einem deutlich abgesetzten, mehr dorsal gelegenen Zapfen, in dessen Mitte eine von faltigem Rande umgebene Grube liegt; in der Tiefe der letzteren liessen sich eine kleine Platte und vier stilettartige Leisten undeutlich erkennen (Fig. 4). Diese Grube bildet, wie man auf Schnitten sieht, den Eingang

zu einem Atrium, in welchem Kopf und Brust des Thieres eingezogen liegen. Kopf und Brust bilden einen Abschnitt, der durch eine enge Verbindungsstelle am Grunde des Atriums in dessen Wand übergeht (Fig. 3 und 7).

Vorne am Kopf bemerken wir die Mundwerkzeuge (Fig. 3 und 7): einen Rüssel und zwei tasterähnliche Gebilde. Ersterer ist ein gekrümmtes Chitinrohr, das am Grunde erweitert ist und an der Spitze Chitinborsten trägt (R.). An der Basis desselben münden Oesophagus und Speichelrohr ein (S.). Rechts und links vom Rüssel liegen die tasterartigen Gebilde (T.). Dieselben bestehen aus einem starken Basalgliede, dem ein kleineres Glied gelenkig aufsitzt; ersteres hat kurze, nach hinten gerichtete Stacheln und aufrechtstehende Borsten. Das zweite Glied erscheint mit Haken versehen. Diese Anhänge dürften als Schutzvorrichtung für den eingezogenen Rüssel dienen. An den Rüssel schliesst sich nach hinten zu ein Schlundgerüst an, das aus einer oberen und unteren muschelähnlichen Platte mit zwei Seitenfortsätzen besteht (Fig. 3, Fpo., Fpu.). Ein Muskelpaar zieht von der dorsalen Kopfwand zur oberen Platte (Fm.).

Genaueres konnte ich von den Mundtheilen aus den Präparaten nicht erkennen, da diese harten, chitinigen Theile beim Schneiden brachen und die umliegenden Gewebe zerrissen. Doch schon aus diesen wenigen Angaben lässt sich eine grosse Ähnlichkeit mit den Mundwerkzeugen der Pupiparen constatiren, so vor Allem was den Rüssel und das Schlundgerüst betrifft, wie aus dem Vergleiche mit den übrigen Pupiparen hervorgeht. Es wird wohl anzunehmen sein, dass der Rüssel von Ascodipteron aus Oberlippe, Stechborste und Unterlippe sich aufbaut. Die tasterartigen Anhänge dürften den Maxillartastern homolog sein und verhalten sich auch functionell bei meiner Form in gleicher Weise wie die von Melophagus ovinus, nämlich als Scheide des Rüssels.

An der dorsalen Wand des Kopfes inserirt sich jederseits eine wenig vorspringende, kurze Antenne (Fig. 3 und 7, An.), die in einer Grube des Kopfes eingesenkt liegt, wie es bei Pupiparen der Fall ist.

¹ Vergl. H. Müggenburg, 1892, S. 296, 297.

Augen vermochte ich nicht zu beobachten, wohl aber ein Nervenpaar (Op.), welches einem rudimentären Opticuspaar entsprechen dürfte. Auf diesen Punkt komme ich noch später zurück.

An der Grenze zwischen Kopf und Thorax finden sich Chitinleisten, die das Hinterhauptloch umfassen. Als ventrale Anhänge trägt die Brust, soweit dies aus den Schnitten ersichtlich war, zwei Paar rudimentärer dreigliedriger Extremitäten. Eine Segmentirung des Thorax ist nicht angedeutet (Fig. 3 und 7).

Aus der eben gegebenen Darstellung folgt, dass der flaschenförmige Theil des Thieres als Abdomen anzusehen ist, in welchem Kopf und Brust eingezogen liegen. Die sackförmige Gestalt des Abdomens, wie sie auf S. 401 beschrieben wurde, die Lage der Stigmen und der vielen Borsten am hinteren Körperende, sowie der Mangel der Segmentirung sind Merkmale, die in Folge der parasitischen Lebensweise erworben sein dürften (Fig. 1 und 2).

Die Körpermaasse sind folgende:

Länge des Abdomens	4.5 mm
Breite des Abdomens (aufgetriebener Theil)	3.0
Breite des Halses	1.3
Breite des Knopfes	1.8
Breite des Zapfens	1.8

Die Haut.

Der Körper wird von einem Epithel bedeckt, das als Matrix nach aussen eine dünne Chitincuticula absondert (Fig. 5 und 7, Cu.). Die Matrixzellen sind kegelförmig gestaltet (Maz.) — die Spitzen der Kegel nach innen gerichtet — und hängen durch Fortsätze mit der Scheide der knapp darunter verlaufenden Ringmuskel zusammen (Rmb.). Der Inhalt der Matrixzellen ist in den proximalen Theilen granulirt und enthält an dieser Stelle den Kern (K.); die distalen Partien derselben weisen eine Faserung senkrecht zur Körperoberfläche auf. Diese faserige Differenzirung dürfte durch den Zug verursacht sein, welcher bei der Muskelcontraction auf die Matrixzellen in Folge ihres

Zusammenhanges mit der Musculatur ausgeübt wird. An dem eingestülpten Vorderkörper nimmt die Matrix bedeutend an Stärke ab. Die Ausstattung des Integumentes mit Borsten wurde bereits früher rücksichtich ihrer Verbreitung besprochen.

Die Körpermusculatur.

Die Körpermusculatur ist am kräftigsten im Abdomen entwickelt. Hier trifft man unter den Hypodermiszellen starke Ringmuskeln an (Fig. 5 und 7, Rmb.), die eine einzige Lage bildend, nebeneinander im ganzen Hinterleib verlaufen, wie Schnitte klar erweisen. Eine Contraction dieser Muskeln bewirkt jedenfalls die Ausstülpung von Kopf und Brust. Ferner dürfte die Ringmusculatur im Zusammenwirken mit den Längsmuskeln zugleich der Athmung dienen. Die Längsmuskeln treten im Abdomen unterhalb der Ringmuskeln auf (Fig. 5 und 7, Lm.). Sie erstrecken sich ohne irgendwelche segmentale Anordnung vom hinteren Körperende fast bis an den vorderen Rand der Atriumwand und zeigen an ihren Insertionsstellen vielfach Verästelungen. Ausserdem gibt es im Abdomen noch zwei Muskeln, die als Retractoren des ausgestülpten Vorderkörpers fungiren. Sie inseriren sich am Grunde des Atriums lateral vom Darm und ziehen schräg nach unten und hinten zur ventralen Körperwand.

Von den Muskeln im Kopf und Thorax habe ich solche der rudimentären Extremitäten und Mundwerkzeuge unterscheiden können (Fig. 5 und 7).

In histologischer Beziehung weisen die Muskeln Querstreifung auf. Ihre Kerne liegen mit dem nicht zu contractiler Substanz umgewandelten Plasma axial (Fig. 5, K₂.).

Wie schon erwähnt, sind die Ringmuskelbündel mit ihren Scheiden an den Hypodermiszellen befestigt. Die Längsmuskeln dagegen hängen an ihren Insertionsstellen mit ersteren zusammen (Fig. 5, Lm.); zuweilen stehen sie jedoch auch direct mit den Matrixzellen in Verbindung.

Das Nervensystem.

Das centrale Nervensystem liegt bei diesem Thiere im eingestülpten Vorderkörper (Fig. 3 und 7). Das obere Schlund-

ganglion (Go.) bildet eine rundliche Masse mit beiderseitigen schwachen Anschwellungen und steht durch eine Commissur, die rechts und links vom Oesophagus verläuft, mit dem unteren Schlundganglion in Verbindung (Gn.). An dieses schliesst sich eine grosse Ganglienmasse, welche den verschmolzenen Thoracal- und Abdominalganglien entsprechen dürfte (Gt.), wie sich dieselbe auch sonst bei Dipteren findet. Diese Ganglienmasse liegt ventral vom Anfangstheil des Mitteldarmes in der Brust und lehnt sich nach hinten zu an eine ventral entspringende Chitinleiste an.

Zu innerst liegt in den Ganglien die Fasersubstanz, darauf folgt nach aussen eine mehr oder minder dicke Lage von Ganglienzellen, zu äusserst eine Hülle.

Vom oberen Schlundganglion gehen zwei Nervenpaare ab: 1. eines nach vorne und oben bis unter das Integument (Op.), wo beide Nerven kolbig anschwellen. Ich glaube diese zwei Nerven als Optici deuten zu dürfen. Für diese Vermuthung vermag ich bloss die Ursprungsstelle der Nerven als Begründung anzuführen, da ich eine Andeutung eines Auges nicht sehen konnte. 2. Ein zweites Nervenpaar, die Antennennerven (N_1 .), entspringt näher der vorderen Wand des Gehirnes (siehe S. 402). Ein drittes von der Schlundcommissur ausgehendes Nervenpaar verläuft über dem Oesophagus und dürfte als Oberlippennerv anzusprechen sein (N_2 .). Den Verlauf weiterer Nerven konnte ich nicht verfolgen.

Der Darm.

Die Mundöffnung liegt an der Basis des Rüssels. Die Nahrung gelangt durch den letzteren zwischen die beiden Schlundplatten, welche bereits dem Oesophagus angehören (Fig. 3 und 7, Oe.). Dieser macht im Kopfe eine S-förmige Windung, ein Umstand, der darauf hindeutet, dass der Rüssel nicht ganz ausgestülpt sein dürfte. Hinter dem oberen und unteren Schlundganglion im Thorax ist die Speiseröhre zapfenförmig in eine Erweiterung des Vorderdarmes, den sogenannten Vormagen, eingestülpt (Fig. 3 und 7, Pv.). Letzterer ist weiter als der Oesophagus, verengt sich aber beim Durchtritt durch den Verbindungsspalt zwischen Thorax und Ab-

domen ganz beträchtlich. Die Zellen des Vorderdarmes, die abgesehen vom Schlundgerüst eine zarte Intima abscheiden, sind im Oesophagus klein. Am hinteren Ende des Zapfens werden dieselben zu einem Cylinderepithel, nehmen aber in der Wand des Proventriculus an Höhe wieder ab. Die Ringmusculatur der Speiseröhre bildet vor dem Vormagen eine Art Sphincter. Im Abdomen geht der Vormagen in den Mitteldarm über (Fig. 7, Md.). Die Grenze zwischen beiden ist durch eine schwache Einschnürung kenntlich. Der Mitteldarm steigt dem Rücken zu, verläuft dort unter dem Herzen bis in den halsartig verengten Theil des Thieres nach hinten, biegt von da ventralwärts nach vorn und wendet sich in einer scharfen Biegung nach hinten; dorsal vom Uterus geht er in den Enddarm über. Wird der Vorderkörper ausgestülpt, so erleiden diese Windungen selbstredend eine Veränderung, da in diesem Falle der ganze Darmtractus nach vorne gezogen wird. Seine grösste Weite erreicht der Mitteldarm in der dorsalen Schlinge unter dem Herzen.

Der Mitteldarm wird von grossen Zellen ausgekleidet, die im Anfang und Ende desselben höher als in dessen Mitte sind. Hie und da ist eine zarte Intima zu sehen. Meist erscheinen die Zellen gegen das Lumen unregelmässig gelappt. Aussen ist der Darmwand eine Muskelschichte aufgelagert.

Der kurze Enddarm schliesst sich an den Mitteldarm an (Fig. 7, Ed.), zieht in gerader Richtung zur Afteröffnung, welche am hinteren Körperende dorsal von der Geschlechtsöffnung mit letzterer am Grunde der früher erwähnten Transversalspalte ausmündet (Fig. 7, Af.). Sein Lumen ist enger als das des Mitteldarmes. Die den Enddarm auskleidende chitinige Intima nimmt gegen den After an Dicke zu, wo sie mit der darunterliegenden kleinzelligen Matrix in die äussere Körperwandung übergeht. Auf das Epithel folgt eine Längs- und Ringmuskellage. Die vier »boutons charnus«, welche Dufour (1845, p. 70) im Rectum der Pupiparen angibt, fand ich hier nicht.

In der Umgebung des Vorder- und theilweise auch des Mitteldarmes in Kopf, Brust und Abdomen liegen drei Paar Speicheldrüsen. Das eine Paar befindet sich im Abdomen zu beiden Seiten der ersten aufsteigenden Biegung des Mitteldarmes, ventral vom vorderen Herzabschnitt; es besteht aus zwei Schläuchen, deren Enden keulenförmig angeschwollen sind (Fig. 7, Sd₁.). Grosse gestreifte Drüsenzellen bilden die Wandung eines solchen Drüsenschlauches und schliessen ein enges Lumen ein. Durch die verengte Stelle, welche Abdomen und Thorax verbindet, setzt sich das schmale distale Drüsenende in einen Ausführungsgang fort; letzterer durchzieht zu beiden Seiten des Verdauungsrohres und des unteren Schlundganglions Brust und Kopf und endigt in einer Blase (Fig. 7, Sr.).

Histologisch weist der Ausführungsgang eine chitinige Intima auf, die eine schwache Ringelung zeigt. Die Wandung der oben erwähnten Blase, eine Art Speichelreservoir, ist dick und springt in zahlreichen Falten gegen ihre Höhlung vor. Die Ausführungsgänge der beiderseitigen Speichelreservoire vereinigen sich vorne zu einem einzigen Speichelrohr (Fig. 3, S.), welches in den Rüssel eintritt. Ob dabei eine Schliessvorrichtung vorkommt, wie Müggenburg (1892, S. 304) eine solche bei Hippobosciden und Nycteribiden beschrieben hat, konnte ich an meinen Schnitten nicht entscheiden. Ebensolche Speicheldrüsen, wie das beschriebene Paar, hat Dufour (1845, S. 67) bei Pupiparen gefunden.

Das zweite Speicheldrüsenpaar ist acinös und liegt zu beiden Seiten des Vorderdarmes im eingestülpten Körpertheil. Jeder Acinus besteht aus mehreren Zellen, welche ihr Secret in einen Hohlraum ergiessen, aus dem es der schmale Ausführungsgang abführt. Von letzteren vereinigen sich mehrere zu einem grösseren Canal, von denen wieder jederseits ein Sammelgang gebildet wird. Diesen konnte ich bis an die Spitze des basalen Tastergliedes verfolgen, seine Ausmündung hingegen sah ich nicht. Die Gänge dieser Drüse zeigen eine deutliche ringförmige Verdickung der Intima, so dass man leicht in die Lage kommen kann, dieselben mit Tracheen zu verwechseln.

Vom dritten Speicheldrüsenpaare (Fig. 3, Sd₃.) sind die runden Drüsenzellen zwischen dem vorigen Drüsenpaare und den übrigen Geweben in Kopf und Brust zerstreut. Von jeder solchen Zelle geht ein dünnes Canälchen aus; alle diese Canälchen führen zu einem weiten Sammelrohr. Die Intima der

Gänge ist glatt. Auch hier vermag ich nicht die Ausmündungsstelle anzugeben.

An der Grenze von End- und Mitteldarm münden die Malpighi'schen Gefässe ein (Fig. 7, Mp.). Ob es jederseits eines oder zwei sind, konnte ich nicht mit Sicherheit constatiren, doch glaube ich der letzteren Zahl den Vorzug geben zu dürfen. Die polygonalen Zellen der Malpighi'schen Gefässe besitzen grosse Kerne, ihr Inhalt färbte sich mit Borax-Carmin intensiv. Nach innen zu ist eine Intima, nach aussen eine stärkere Basalmembran sichtbar.

Das Circulationssystem.

Das Herz ist schlauchförmig, liegt im Abdomen dorsal vom Mitteldarm (Fig. 7, H.). Mit letzterem steigt es dem Rücken zu, biegt dann mit dem Darm analwärts um und verläuft knapp über demselben bis zu seiner Abbiegung nach unten. Von da erstreckt es sich weiter über den Anfang des Enddarmes in den halsartig verengten Theil vom Abdomen. Nach vorne durch den Verbindungsspalt von Abdomen und Thorax entsendet es in den eingestülpten Vorderkörper die Aorta (Fig. 3, A.), welche ich bis zum oberen Schlundganglion verfolgen konnte. Mehrere seitliche Spaltöffnungen am Herzen, denen vorne und hinten grosse Kerne anliegen, stellen die Communication zwischen Herz und dem Pericardialsinus her, der durch eine ventral vom Herzen ausgespannte Membran nach unten abgeschlossen wird (Fig. 7, Sm).

Das Respirationssystem.

Das Tracheensystem mündet durch sechs am hinteren Körperende liegende Stigmen, deren Lage ich bereits früher angab, nach aussen. Es besteht aus zwei Paaren von Längsstämmen, einem dorsalen und ventralen, von denen das erstere zu beiden Seiten des Herzens und das letztere rechts und links vom Uterus nach vorne zieht. Die gleichseitigen Tracheenstämme beider Paare hängen hinten durch eine kurze Anastomose zusammen. Jeder dorsale Stamm spaltet sich hinter der Queranastomose in zwei Äste, welche zu den vier dorsalen Stigmen verlaufen, während das ventrale Tracheenpaar

in den zwei ventral von der Querfurche gelegenen Stigmen ausmündet. Leider kann ich bezüglich des Tracheenverlaufes nichts Genaueres angeben, da die stellenweise defecten Schnitte eine Untersuchung in dieser Richtung unmöglich machten. Dennoch lässt sich schon aus diesen lückenhaften Beobachtungen erkennen, dass den beschriebenen Verhältnissen das Respirationssystem der Pupiparenlarven am nächsten kommt, vor Allem was Lage und Zahl der Stigmen betrifft. So sagt Leuckart (1858, S. 178): »Zu den Seiten dieses ∞ förmigen Hornstückes bemerkt man, wie schon Leon Dufour angegeben hat, noch zwei kleinere und schmälere, gleichfalls braune Chitinringe von 0.05 mm im Durchmesser, die in gleicher Weise wie die oben beschriebenen grossen und breiten Ringe eine grubenförmige, nur viel seichtere Vertiefung in sich einschliessen. Aber der Boden dieser Vertiefung ist nicht vollkommen glatt, sondern in der Mitte von einer deutlichen Querspalte (0.015 mm) durchbrochen, die von einem braunen, schmalen und lippenförmigen Wulste eingefasst wird und sich durch ihren Zusammenhang mit dem Tracheensystem der Larve als ein Stigma zu erkennen gibt. Leon Dufour hat dieses Stigma bereits richtig erkannt; er irrt nur darin, dass er dasselbe für das einzige hält, das unseren Thieren zukommt. Nach meiner Untersuchung besitzen die Larven von Melophagus auch noch zwei andere Stigmenpaare, und zwar im Innern der zuerst beschriebenen grossen und sackförmigen Grube am Hinterleibsende«.

Man sieht daraus, dass die Larve von Melophagus ovinus zu einer bestimmten Zeit sechs Luftlöcher am Hinterleibsende besitzt. Bei manchen anderen Cycloraphenlarven tritt nach der zweiten Häutung wohl auch dieselbe Stigmenzahl am letzten Abdominalsegment auf, gleichzeitig aber ist ein Stigmenpaar am Prothorax entwickelt oder wenigstens angedeutet. Da letzteres bei Ascodipteron phyllorhinae nicht beobachtet wurde, so stimmt hier das Verhalten der Stigmen am meisten mit jenem der Pupiparenlarven überein.

Der Fettkörper und die Oenocyten.

Den Fettkörper, ebenso wie die Oenocyten trifft man bei diesem Parasiten im Abdomen. Ersterer besteht aus rundlichen Zellen, die meist regellos — nur manchmal erscheinen sie perlschnurartig angeordnet — nebeneinanderliegen und die Lücken zwischen den Organen ausfüllen. Der Zellinhalt ist granulirt und enthält Fetttropfen. Die Kerne treten in einer Zelle gewöhnlich zu zweien auf. Die Zweikernigkeit der Fettzellen stellt Wielowiejski (1886, S. 534) für Melophagus und Apis als Regel auf im Gegensatz zu Musca, deren Fettzellen fast stets mehrere Kerne enthalten, und den übrigen Insecten mit einkernigen Fettzellen.

In den kleineren zwischen dem Fettkörper liegenden Zellen glaube ich die Oenocyten gefunden zu haben. Ihr Protoplasma ist fein granulirt und enthält einen bis mehrere Kerne. Auch hier ist keine Regelmässigkeit in der Anordnung dieser Zellen zu beobachten.

Der weibliche Geschlechtsapparat.

Meine Ansicht, dass dieser Fledermausparasit zu den pupiparen Dipteren zu stellen ist, wird in ausgezeichneter Weise durch den Bau des weiblichen Geschlechtsapparates gestützt, welcher, verglichen mit Leuckart's Angaben über die weiblichen Genitalien von Melophagus ovinus, eine vielfache Übereinstimmung mit letzteren zeigt (1858).

Die Ovarien (Fig. 7 und 9 Ov.) liegen zu beiden Seiten des Mitteldarmes ventral von seiner letzten Biegung. Wie bei allen Insecten bestehen sie auch hier aus Eiröhren, und zwar ist die Zahl derselben sehr gering: so weist das rechtsseitige zwei, das linksseitige drei Eiröhren auf. In den Eiröhren selbst liegen nur wenig Eizellen. Jede der letzteren ist von einer Anzahl Nährzellen umschlossen: beide, Ei und Nährzellen, werden von Follikezellen epithelartig umgeben. Die Eiröhren jedes Ovariums sind in einer musculösen Hülle gelegen, welche aus Längs- und Ringmuskeln besteht. Der einzige, allerdings geringfügige Unterschied zwischen den Ovarien von Ascodipteron phyllorhinae und jenen von Melophagus ovinus wäre die bei ersterer Form auftretende Asymmetrie in der Anzahl der Eiröhren.

An die Ovarien schliessen sich die ziemlich engen Eileiter an (Od.), die sich bald zu einem kurzen, unpaaren Gang vereinigen. In histologischer Beziehung folgt auf eine zarte Intima ein Cylinderepithel, dem ein Muskelbelag aufliegt.

In der Mittellinie zwischen beiden Oviducten mündet in den unpaaren Theil des Eileiters ein birnförmiges Säckchen (Rs.) ein. Seine Wandung besteht im Vergleich mit jener des Oviductes aus noch höheren Zellen, die nach innen zu ebenfalls eine chitinige Membran absondern. Aussen liegt eine kräftige Ring- und Längsmusculatur. Knapp vor der Einmündung in den Eileiter ist ein stärkerer Sphincter zu beobachten. Ich glaube dieses Täschchen als Receptaculum seminis ansehen zu können, da sich überdies seine innere Cavität mit dünnen, zu einer Masse zusammengeballten, fadenartigen Gebilden erfüllt zeigte, welche an Spermatozoën erinnern.

So wäre *Melophagus ovinus* gegenüber die Samentasche unseres Parasiten eine höhere Differenzirung, da bei ersterer Form der obere erweiterte Theil des unpaaren Eierganges zur Aufbewahrung des Spermas dient.¹ Während daher bei *Melophagus* das reife Ei auf dem Wege nach der Vagina den Samenbehälter selbst passiren muss, wird es bei *Ascodipteron* im Vorbeigleiten an dem Receptaculum befruchtet.

Auf den unpaaren Theil des Oviductes folgt nach hinten zu die Vagina (V.); sie liegt ventral vom Enddarm. An der Grenze zwischen Eileiter und Scheide erheben sich eine dorsale und ventrale Falte, die gegeneinander vorspringen und nur eine kleine Öffnung als Verbindung zwischen beiden lassen. Die Scheide zerfällt in zwei Theile: einem hinteren schmalen, i. e. die Scheide im engeren Sinne, und einem oberen in der Transversalebene doppelt so breiten, der als Uterus dienen dürfte (Fig. 9). In dorso-ventraler Richtung zeigt letzterer, wie aus Medianschnitten zu ersehen ist, eine bedeutende Ausdehnung, indem er die Scheide an Weite um das Fünffache übertrifft (Fig. 7). Nach aussen mündet die Scheide, wie schon erwähnt, ventral vom After in einer Querspalte gemeinsam mit letzterem.

Was die Gewebe der Vagina betrifft, so setzt sich ihr Epithel aus kleinen Zellen zusammen, nur in der Mitte der ventralen Uteruswandung wird es zu einem Cylinderepithel.

¹ Vergl. Leuckart (1858, S. 166).

Die Ringmusculatur des Fruchtbehälters nimmt gegen den verengten Scheidentheil, dessen Mündung in den ersteren an seiner dorsalen Wand gelegen ist, an Stärke bedeutend zu, und zwar gesellen sich zu der einfachen Muskellage des Uterus ungefähr, in der Mitte seiner dorsalen und hinteren Wandung allmälig mehrere dazu. Letztere gehen schliesslich in die Ringmusculatur der engen Vagina über, wobei sich zwischen Epithel und Ringmuskeln eine Längsmuskelschichte einschiebt. Die Intima verdickt sich auch allmälig, bis sie sammt Epithel an der Geschlechtsöffnung in die äussere Körperbedeckung übergeht.

Der Uterus und die Vagina werden durch Muskeln fixirt (Fig. 7), die sich zwischen diesen Organen und der Körperwand ausspannen. Diejenigen Muskeln, die zur Befestigung des Uterus dienen, inseriren sich an der dorsalen, ventralen, sowie hinteren Wand desselben und ziehen nach hinten, wo sie sich an der Körperwand in der Umgebung der Geschlechtsöffnung ansetzen. Die anderen Muskeln durchqueren den knopfartigen Körperabschnitt, indem sie knapp vor der Geschlechtsöffnung von der Vagina nach oben und unten zu der seitlichen Körperwandung verlaufen.

Von Anhangsdrüsen des Genitalapparates konnte ich ein Paar finden (Fig. 7 und 9, And.), und zwar dasjenige, welches dem unteren stärkeren bei Melophagus ovinus entspricht. Ein zweites Paar war nicht zu sehen, ein nicht schwerwiegender Unterschied den Pupiparen gegenüber, wenn man berücksichtigt: 1. dass Braula coeca, die ja auch zu dieser Abtheilung gehört, nur ein Paar Anhangsdrüsen besitzt, und 2. dass das obere Drüsenpaar des weiblichen Geschlechtsapparates bei Melophagus ovinus sehr klein ist, ja, ich möchte fast sagen rudimentär erscheint. Diese Anhangsdrüsen sind bei unserem Parasiten acinös gebaut, besitzen eine ansehnliche Ausdehnung und erfüllen im Abdomen jederseits von der Medianebene alle Lücken zwischen den übrigen Organen. Functionell dürften sie dieselbe Bedeutung haben, ein Secret zur Ernährung der Embryonen zu liefern, wie dies Leuckart (1858, S. 153) für die Drüse der Pupiparen angibt. Die Acini werden von flachen Zellen gebildet, die einen grossen Secretraum umschliessen

(Fig. 8). Der Inhalt der Zellen ist grobkörnig, gegen das Lumen weist das Zellplasma eine cuticulaähnliche Grenzlage auf. Das Drüsenlumen ist mit glänzenden Secretkörnchen erfüllt. Die Acini sind aussen von einer Tunica propria umgeben. Solche Acini sitzen dichtgedrängt an den Sammelgängen, in die sich ihre Lumina öffnen. Jederseits vereinigen sich diese Gänge zu einem grösseren Canal; die beiden letzteren, i. e. der rechts- und linksseitige, bilden dorsal vom Receptaculum einen gemeinsamen Ausführungsgang, der auf der dorsalen Falte an der Grenze von Oviduct und Uterus einmündet.

Das kleinzellige Epithel des Ausführungsganges dieser Anhangsdrüsen sondert gegen das Lumen eine Cuticula mit ringförmigen Verdickungen ab, durch welche man an die Speichelcanäle und Tracheen erinnert wird; knapp vor der Einmündung besitzt der Drüsencanal eine starke Ringmusculatur (Fig. 7). In letzterer Beziehung weicht Ascodipteron phyllorhinae von Melophagus ovinus ab.¹

Äussere Geschlechtsanhänge gibt es nicht.

Schluss.

Fassen wir die im Vorhergehenden gewonnenen Resultate bezüglich Ascodipteron phyllorhinae zusammen, so finden wir Folgendes:

Während äusserlich kein hervorstechendes Merkmal zu erkennen ist, nach welchem der eigenthümliche Parasit in eine bestimmte Thiergruppe einzuordnen wäre, mit Ausnahme der Zutheilung desselben zu den luftlebenden Arthropoden, zeigt sein innerer Bau eine grosse Übereinstimmung mit der Organisation von pupiparen Dipteren. Die auffallendste Ähnlichkeit mit letzteren liegt in den weiblichen Genitalorganen. Die geringe Anzahl der Eiröhren mit ihrer verhältnissmässig kräftigen Muskelhülle, der erweiterte Scheidentheil, welcher als Fruchtbehälter dient, die colossale Anhangsdrüse, welche in Folge ihrer wichtigen Function nur bei Pupiparen diese grosse Ausdehnung erreicht, alles dies stimmt mit den Verhältnissen bei Melophagus, Hippobosca u. A. überein. Betrachtet man die Mundwerkzeuge,

¹ Vergl. Leuckart, 1858, S. 169.

so sieht man, dass der Rüssel, in dem Oesophagus und Speichelrohr endigen, die Taster und das Schlundgerüst bei der genannten Fliegenabtheilung grosse Übereinstimmung aufweisen. Ferner kommen drei Stigmenpaare, wie sie bei *Ascodipteron* auftreten, nur am hinteren Körperende bei bestimmten Stadien der Pupiparenlarven vor.

Nachdem nun feststeht, dass Ascodipteron phyllorhinae zur Gruppe der pupiparen Dipteren zu stellen ist, frägt es sich, in welche der vier Pupiparenfamilien dieses Thier einzureihen ist. Leider besitze ich nur dies eine weibliche Exemplar. Die besonderen Eigenthümlichkeiten von Ascodipteron, die offenbar mit der parasitischen Lebensweise zusammenhängen, sind unter den Pupiparen, soweit mir bekannt ist, ohne Analogon. Es liesse sich mit einer gewissen Berechtigung aus dem Wirthe auf die Familie des Parasiten schliessen; freilich ein etwas unsicherer Schluss. Unter den Pupiparen sind die Nycteribiden und Strebliden 1 Chiropterenparasiten. Es wird daher angenommen werden können, dass das beschriebene Thier als Fledermausschmarotzer in eine dieser beiden Familien gehören dürfte. Noch schwieriger wird es zu entscheiden, welcher dieser Familien Ascodipteron zuzutheilen ist, da sowohl bei den Nycteribiden, als bei den Strebliden Phyllorhina als Wirthsthier vorkommt. Es wird eine nähere Bestimmung erst dann möglich sein, wenn das zugehörige Männchen, welches höchstwahrscheinlich freibeweglich ist, aufgefunden sein wird.

Literatur.

- 1845. L. Dufour: Etudes anatomiques et physiologiques sur les Insectes Diptères de la famille des Pupipares. Ann. d. Sc. nat. 3. Série Zool., Bd. III.
- 1858. R. Leuckart: Die Fortpflanzung und Entwicklung der Pupiparen. Abhandl. d. naturf. Gesellsch. in Halle, 4. Bd.

¹ Es soll nur bemerkt werden, dass die auf einer Fledermaus beobachtete als *Lipoptena phyllostomatis* beschriebene Form zu den Strebliden und nicht wie sonst die Lipoptenen zu den Hippobosciden gehören dürfte (Kolenati, 1863, S. 19 und 98).

- 1863. F. A. Kolenati: Beiträge zur Kenntniss der Phthiriomyiarien. Versuch einer Monographie der Aphanipteren, Nycteribiden und Strebliden.
- 1886. H. v. Wielowiejski: Über das Blutgewebe der Insecten. Zeitschr. f. wiss. Zool. Bd. 43.
- 1892. F. H. Müggenburg: Der Rüssel der *Diptera pupipara*. Arch. f. Naturg. 58. Jahrg.

Tafelerklärung.

A. Aorta.

Af. After.

An. Antenne.

And. Anhangsdrüse.

Chr₁. Chitinring.

Chr₂. Stigma.

Cu. Cuticula.

Ed. Enddarm.

Fm. Fulcrummuskel.

Fpo. Obere Fulcrumplatte.

Fpu. Untere Fulcrumplatte.

Gnf. Genitalöffnung.

Go. Oberes Schlundganglion.

Gt. Thoracalganglion.

Gu. Unteres Schlundganglion.

H. Herz.

K. Kern.

Lm. Längsmuskeln.

Maz. Matrixzellen.

Md. Mitteldarm.

Mp. Malpighi'sches Gefäss.

N. Nerv.

Od. Oviduct.

Oe. Oesophagus.

Op. Opticus.

Ov. Ovarium.

Pv. Proventriculus.

R. Rüssel.

Rmb. Ringmuskelbündel.

Rs. Receptaculum seminis.

S. Speichelrohr.

Sd. Speicheldrüse.

Sm. Pericardialmembran.

Sr. Speichelreservoir.

T. Taster.

Tf. Transversalfurche.

Tsp. Transversalspalte.

V. Ventralseite.

Va. Vagina.

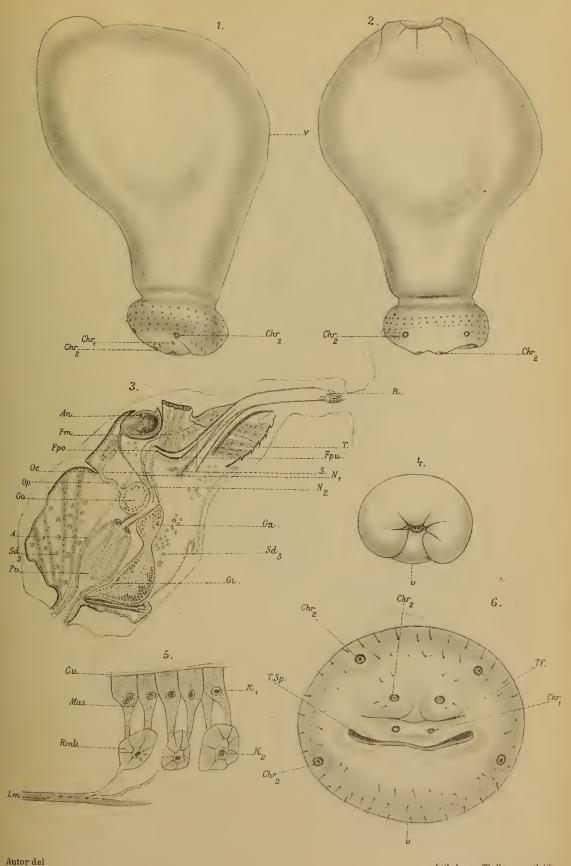
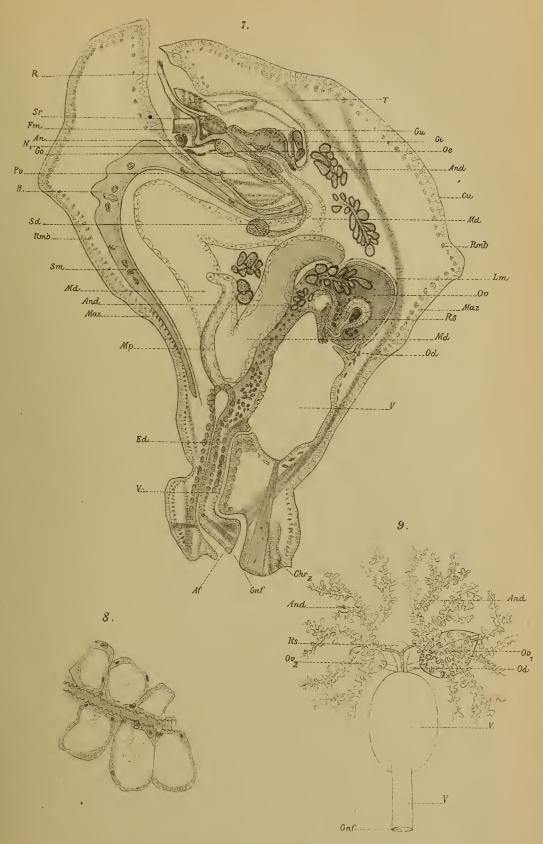

Tafel I.

Fig. 1. Ascodipteron phyllorhinae in der Seitenansicht.


- » 2. Dasselbe in der Dorsalansicht.
- 3. Medianschnitt durch den eingezogenen Kopf und Thorax (Constructionsbild aus mehreren Schnitten).
- » 4. Vorderes Körperende von vorne gesehen mit dem Eingange in das Atrium.
- 5. Hautepithel mit der darunterliegenden Musculatur; die Ringmuskelbündel erscheinen im Querschnitte.
- » 6. Hinteres Körperende von hinten gesehen.

Tafel II.

- Fig. 7. Medianschnitt durch das ganze Thier (combinirt).
 - » 8. Querschnitt durch Acini der Anhangsdrüse des weiblichen Geschlechtsapparates.
 - 9. Construirtes Schema des weiblichen Geschlechtsapparates.

Sitzungsberichte d. kais. Akad. d. Wiss., math.-naturw. Classe, Bd. CV. Abth. I. 1896.

Autordei Sitzungsberichte d. kais. Akad. d. Wiss., math.-naturw. Classe, Bd. CV. Abth. l. 1896.